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Abstract: The goal of the Itacio component model is to statically verify 
software systems made up of components. It relies on Constraint Logic 
Programming for stating the requirements and guarantees of each component, 
and offers a model of verifying that a system built by combining components 
fulfils the requirements for their proper operation. Itacio is driven by the goals 
of static, automatic verification and high feasibility, including an easy adoption 
by developers and the use of well-known technologies. 

The notion of component in this model is deliberately open; thus, this method 
can be (and has been) applied at different abstraction levels in the development 
process. Among them, one obvious use (and its original motivation) is the 
description and verification of software components in the most usual sense of 
the word. 

As an example, in this paper we apply Itacio to WaveX, a component-based 
system for real-time audio processing. WaveX processor modules can be 
combined in different topologies to achieve the desired effect. Provided that 
each component is described in terms of its operation restrictions and 
guarantees (by means of Horn clauses), the Itacio inference system will 
statically validate the chosen composition or pinpoint the offending connections 
(and explain the reasons for failure). 

KEYWORDS: software components, component model, verification, 
constraint logic programming, software engineering. 

1 Introduction 

The Itacio component model [1, 2, 4, 9] is mainly a Software Engineering method for 
verifying the composition of software components. Its motivation arose from 
professional experiences in software development. It became clear that the most 
popular component models, such as COM, CORBA or JavaBeans solved cross-
platform or low-level interoperation problems, but they did not offer the developer 
much protection against the violation of functional restrictions of the involved 
components. Many of the defects of the software could have been avoided, provided 



that all  previous knowledge about the components was taken into account. All too 
frequently, the problem was not caused by a malfunction of any of the components, 
but by an incorrect connection of a component with its neighbours; a sort of emergent 
behaviour. 

This contrasted with the protection a programmer enjoys regarding signatures. In 
strongly typed languages, the compiler checks all subroutine or method calls and 
points out every type violation in a static manner (at compile time), without the need 
of running the program. At the component level there exists a similar protection 
(describing interfaces with IDL or type libraries). But nothing protects the 
programmer beyond type and signature checking; as far as other kinds of restrictions 
are involved, the programmer or designer is left alone with a natural-language (and 
hence ambiguous) documentation, and he must guarantee that all this information has 
been correctly interpreted and taken into account. The correctness and completeness 
of this documentation does not play any direct role in automatic tests. 

We felt the need of a way for: 

• Expressing all that a component developer knows about the component 

• Using this information in a static and automatic verification process 

Also, we had some constraints in mind: 

• The solution should be easily adopted by an organization, without a very 
specialised training 

• The solution should not require a significant advance in the state of the art of any 
branch of computer science 

The result of our research in this area is the Itacio component model. As for the 
knowledge expression problem, we found Constraint Logic Programming to be a 
convenient solution: it is very flexible, and the inference (here verification) process is 
clearly automatable. In addition, it can be handled by a typical developer with an 
affordable training (both in terms of time and cost), since it usually does not imply a 
mentality shock. We found that other approaches that could be of interest for 
verifying components did not fit well the above requirements. For instance, formal 
methods seem difficult to use by the average developer; even if it were false, this is 
the way they are perceived by the industry [14]. Other initiatives, such as OCL [8],  
are oriented to modelling only; OCL explicitly warns about being considered as 
“executable” [8, p.1]. Logic programming addresses both (and other) limitations. 

Logic programming (and its advanced versions) is not a widespread practice in the 
development industry; our advocacy of this long-tradition technology as a companion 
for software components is initially surprising in peer-to-peer presentations, but after 
the necessary explanations we usually get positive feedback. Other authors agree that 
logic programming can fill significant gaps in current software component  
technologies [11]. Ongoing projects try to give logic programming languages the 
necessary features to allow them to be used as the basis of big projects, efficiency 
among others [17]; but we think that even using them only as an additional tool in 
combination with fully imperative implementations can bring significant benefits. 



In this paper, the Itacio component model is briefly introduced. Then (and in a 
totally independent manner) the WaveX real-time sound processing system is 
described. Afterwards, the application of Itacio to the verification of WaveX 
processor designs is presented. Finally, conclusions are obtained from these 
experiences and future research and development lines are presented. 

2 The Itacio Component Model 

The Itacio component model offers a way of verifying software systems built by 
joining components. The main advantages of this model are that no execution of the 
program is needed, the specification system is fully modular and, in addition, it can be 
easily supported by a Constraint Logic Programming system. Finally, this model can 
be applied at different levels of abstraction. The notion of component in this model is 
deliberately open, so the user can apply a general verification framework to a very 
wide spectrum of problems beyond typical binary components [3]. 

A precise description of this model can be found in [2]. The central idea of the 
Itacio model is a flexible definition of a component. A component C is an entity 
which has a frontier F(C) and a set of restrictive expressions E(C). 

F(C) is a finite set whose elements are called connection points; these connection 
points can be sources (whose set is denoted by S(C)) or sinks (whose set is denoted by 
K(C)). Informally stated, sources carry information outside of a component (e.g., a 
function call) and sinks introduce information into a component (e.g., a function’s 
entry point). Components are considered to be black boxes; their only observable 
behaviour is described in terms of F(C) and E(C). A consequence of this is that the 
only possible source of errors is a bad connection between components. That is not 
necessarily true in the real world, but this axiom allows Itacio to become functional. If 
the internal behaviour of a component must be verified, the model can be applied 
again at a lower level of abstraction.  

Restrictive expressions are also divided into two disjoint subsets. The set of 
requirements R(C) contains restrictive expressions that are Horn clauses over the 
sinks. The set of guarantees G(C) contains Horn clauses over both sinks and sources. 
In addition, there is a one-to-one correspondence between the sinks and the 
requirements (there is one requirement predicate associated to each sink, although this 
predicate can refer to more than one sink). Requirements do not refer to sources 
because, as said above, this system intends to verify the composition of components, 
not the internal behaviour of a component; so it is assumed that the component 
manufacturer has control over the behaviour of the component itself and he does not 
need to restrict its own outputs. Maybe another component will (in its restrictions 
over its own inputs or sinks).   

A system Ω = {ν, ε, L} is a finite graph whose nodes ν are components and whose 
edges ε are source/sink pairs, together with a set L of auxiliary predicates called the 
library. Thus, a system is built by taking components and connecting each and every 
source with some sink, and adding some auxiliary predicates. The first requirement 
for a system (the so-called topological correctness) establishes that there will be no 



isolated connection points (although this is a possible extension for the system; see 
future work at the end of this article). 

The knowledge base for the system, K(Ω), is built by following an iterative 
substitution process over all the source and sink names so that, if  some si ∈ S(Cm) 
and kj ∈ K(Cn) are connected, a new, unique atom name a is generated and a new 
version of the involved rules (be it requirements or guarantees) is generated as 
needed, substituting all the occurrences of si and kj by a in these generated rules. The 
K(Ω) resulting from this process implicitly contains the information about the 
topology of the system and all the deducible rules that relate inputs and outputs of the 
components. The building process also ensures that the relationship between each 
resulting requirement and its associated sink is not lost. 

Finally, the verification model relies on an inference process over K(Ω). The 
system is considered to be correct if each and every requirement of K(Ω) is proven to 
be true. Also, since each requirement in K(Ω) is related to one sink, if some 
requirement is not fulfilled it is possible to know exactly which connection point is 
failing and why. 

A first prototype for this model was implemented with a diagramming tool [1], 
which allowed to make an initial test for the basic ideas; after that, a Java/XML/VML 
prototype (with a web-based user interface) was built [2, 3]. Experiments with this 
second prototype allowed to refine the structure of the model and to test its 
application to new abstraction layers of the development process to verify that this 
simple schema is useful and will behave as expected in different situations. It was 
applied to time evolution of reuse contracts [3], to remote personal computer  
diagnostics [5] and others. Although none of this use cases had been planned when 
the model was described, it was successfully applied with no modifications. This gave 
confidence on its generality. 

Currently, a third prototype is in its final development stages. The user interface is  
web-based (making use of ASP, XML and VML), the information about components 
and systems is stored in a database (previous versions used text files), and the 
inference engine is the ECLiPSe CLP System [6], as it had been also in previous 
versions. This third version of Itacio has been used for the experiments that led to this 
paper. Although this is a prototype and its usability could be clearly improved, it must 
be noticed that the technologies that would be involved in that improvement are 
widely available and well-known. 

3 The WaveX Sound Processing System 

WaveX is a real-time sound processing system developed in C++, making use of 
the Microsoft Visual C++ 6.0 compiler. The Microsoft Foundation Classes, or MFC 
[15], an object-oriented framework included with the compiler, are also used, 
specially for the GUI. 

The goal of WaveX is to bring an audio processing system that leverages the 
processing power of modern personal computers. Professional, specific sound 
processing devices are costly, whereas current personal computers have reached a 
computing capacity that enables software to be used as a real-time digital sound 



processor. In addition, sound capture and play devices (i.e., sound cards) are 
widespread and affordable; in fact, it is not unusual that modern motherboards include 
them onboard. There are already sound processing systems which take advantage of 
personal computers, although they frequently advocate the use of additional hardware 
[10, 18]. Many other products are available for audio editing, but they are not usually 
oriented to real-time processing [7]. 

Hence, the use of domestic, general-purpose computing equipment in place of 
specific sound processing devices becomes a cheap and convenient alternative for 
many users. Some milliseconds of sound are digitised (by means of an Analog-to-
Digital Converter) and stored in a buffer of discrete values that represent the 
amplitude of the signal at regular time lapses; the processing can be done numerically 
over these values, and the Digital-to-Analog hardware converter generates the 
resulting analog wave that we can hear [16]. Modern personal computers offer high 
processing capabilities which allow these computations to be fast enough to provide a 
real-time source of sound; all that is needed is to repeat the same operations on the 
next buffer while the previous one is being played by the sound hardware, without 
any interruption. 

In general, sound processing is done by combining different stages, i.e., devices 
whose inputs and outputs are connected by wires (like distortion pedals, mixers, and 
the like). Since WaveX intends to substitute this structure by software, it seemed a 
good candidate for  component-based development. A general framework was 
defined, and then a module was implemented for each desired effect (this process 
continues nowadays). The user of WaveX can describe the so-called topology of the 
sound processor in a description text file (more details on this later), and when this 
file is loaded by WaveX it sets up all the necessary components and their connections. 
Of course, the huge flexibility of software is a great advantage, since new modules for 
specific effects can be developed and used in the system at very low cost. 

We decided to build WaveX as a Microsoft Windows application, where the 
modules would be Dynamic Link Libraries (DLLs) with a defined interface. A 
proprietary interface schema was defined for these DLLs. No middleware (such as 
COM or CORBA) was used for several reasons. First, efficiency and development 
simplicity were important factors. Thus, the time overhead of middleware calls was 
undesirable; so was the development complexity overhead involved. Also, 
middleware would not have brought any remarkable benefit in this case. No inter-
process or inter-machine communication / deployment was planned, no inter-
application communication seemed necessary, no multiple language support was 
desired. 

The initial version of WaveX includes several components. The example presented 
here is deliberately simple, since the focus of this paper is not the sound processing 
system itself; thus, only some of the possible components will be described here for 
simplicity and space reasons –enough to get a basic understanding of what the system 
is and does. 

DV_WaveInDevice captures the sound being digitised by the sound card and 
supplies it on its only output. 

DV_WaveOutDevice receives a sound stream on its only input and plays it on the 
PC hardware. 



DV_WaveGeneratorDevice generates a sound with certain features and supplies 
it in its only output (it is used mainly for testing purposes). 

EF_Compression: Compression effect. It receives a sound stream on its input, and 
raises the amplitude of the weaker signals whereas the stronger signals are less 
affected. The dynamic range of a signal describes the range of loudness from the 
quietest signal in a recording to the loudest one; the result of compression, thus, is a 
smaller dynamic range, something that can be needed because the recording device 
can register a limited dynamic range (so without compression some sounds would be 
lost) or because of personal preferences. 

EF_Distortion: The amplitude of a signal can be limited to certain maximum 
levels; if the original wave goes below or over the limits (saturation), it is cut off. In 
the real world it can happen because of circuitry or device recording practical 
limitations (and it is usually an undesired effect), but it is also deliberately used in 
certain cases (electric guitars are often distorted with specific devices). 

EF_Echo: Echo results from taking a signal and adding the same signal with 
certain time delay and possibly with a lower amplitude. This component implements 
several kinds of echo effects: conventional echo adds the displaced signal indefinitely 
but with a progressive decay, with the effect of an ever quieter repetition (just as 
natural echo). Delay adds the signal only once; the effect is the same sound played 
twice but not simultaneously (the delay is usually very short). Reverberation tries to 
emulate the effect of the sound echoing from different walls (at different distances 
and angles) in a room, and this effect is achieved by adding the signal with different 
delays and decays. EF_Echo is a sample of a component whose behaviour can be 
highly parameterised. 

EF_Gain: This component simply multiplies the amplitude of the signal by a 
factor. A factor of 2 produces a signal which is “twice as louder” as the original one; a 
factor of 0 produces silence. 

EF_SepChannels: This component has one input and two outputs. The input 
signal is supposed to be stereo, and the left and right components (channels) are 
separated into two mono signals. 

EF_JoinChannels: This component has two inputs and one output. It receives two 
mono sound streams, and combines them into an stereo output signal. 

MODULE Input DV_WaveInDevice.DLL 
 PARAM DesiredChannels 2 
 PARAM DesiredBitsPerSample 16 
 PARAM DesiredBufferSize 4096 
 PARAM DesiredSamplesPerSecond 44100 
 
MODULE Separation EF_SepChannels.DLL 
 
MODULE Joining EF_JoinChannels.DLL 
 
MODULE Play DV_WaveOutDevice.DLL 
 PARAM DesiredChannels 2 
 PARAM DesiredBitsPerSample 16 
 PARAM DesiredSamplesPerSecond 44100 
 
LINK Input out Separation in 
LINK Separation left Joining right 
LINK Separation right Joining left 
LINK Joining out Play in 

 
Fig. 1. A WaveX script which describes a system for 
inverting stereo channels; on the right, graphical 
representation of this system. 

 



Many other components can be (and are being) implemented: noise gates, 
frequency filters, mixers, etc. Also, WaveX will be extended to process signals from 
disk and to record them to disk. All that is needed is to create new components. The 
core of the system will also be extended to synchronize different signals, so that it can 
be used as a small, cheap recording and mixing studio. For more information on the 
WaveX project, see [19]. 

As said above, these WaveX components have well-defined inputs and outputs. 
Their operation can also be modified by means of different parameters. For instance, 
DV_WaveInDevice can be set up to record signals at different sampling rates (8000, 
11025, 22050 and 44100 samples per second), different resolutions (8 or 16 bits per 
sample), different number of channels (1 for mono signals and 2 for stereo signals), 
and different buffer lengths. DV_Gain can raise or reduce the amplitude of a signal 
depending on the gain factor. 

There is a tension between parameters and sinks; the role of parameters is to allow 
the creation of component instances with some degree of freedom over its behaviour, 
without the need of creating additional sinks and “constant” components just to 
represent the parameter values. This would add unneeded complexity to the design. 

As said above, the user can write a “topology” file that describes certain 
configuration of components. For instance, the script in Fig. 1 inverts left and right 
channels of a stereo signal. The involved keywords are very simple: the MODULE 
statement declares a module instance, indicating which component (DLL) implements 
it. The PARAM statements follow the component they affect. The LINK statements 
refer to the declared component instances, giving information on how they must be 
connected. The syntax can be easily deduced from this sample: 

MODULE <Name> <ComponentDLL> 
PARAM <ParamName> <Value> 
LINK <OriginModule> <Source> <EndModule> <Sink> 

The WaveX core loads and interprets this script, creating the working system by 
combining the necessary components (see Fig. 2). 

 

Fig. 2. The sample WaveX system in action: the core (WavexGUI), the Input component and 
the Play component. The Separation and Joining components have no visual representation. 



With this simple example, it seems that no verification is needed. But even in this 
case, errors can be made. For instance, if the Input device is configured to record a 
mono signal (PARAM DesiredChannels 1) the system will not work. The 
Separation component needs a stereo signal, whereas Input would be configured to 
produce a mono signal. A special difficulty is that problems could arise at distant 
components; for instance, if Input was configured to record at 44100 samples per 
second but Play was configured to play at 22050 samples per second,  the problem 
would manifest at the connection between Play and Joining (there is really no 
problem until that point, since the intermediate components can handle any sampling 
rate). Some devices may require a limited amplitude margin (for instance, certain 
playing hardware may even be damaged by a too loud signal, so it could be 
interesting to require limits somewhere). Of course, WaveX is designed to support 
much more complicated systems (involving more components and more interrelated 
parameters) than the small example of Fig. 1, and there are lots of potential 
malformations. 

There is still an important problem when WaveX is used in real time. As said 
above, each buffer holds a certain lapse of the sound; its duration depends on buffer 
size, sampling rate and the quality (resolution and number of channels) of the signal. 
The buffer generated by a recording component is passed from one component to 
another, being processed in different ways, and usually ends in a playing component.  
The time window available for doing this is the duration of a buffer; if the time 
needed for fully processing a buffer is longer than the lapse of sound a buffer holds, 
the system will not be prepared for immediately processing the next recorded buffer, 
since the recorder produces buffers at a constant and uninterrupted pace. 

Of course, it is possible to try to tackle these connection problems with 
“traditional” pre/postconditions or assertions [12]. But this has some disadvantages: 
− The interface description (and the knowledge about the intended use) of a 

component will be buried in the processing source code, mixed with it. 
− The process of handling a mismatch does not end simply detecting it; the error 

condition must be reported, described and properly handled, and coherent 
exception handling may not be an easy task (especially when separate components 
are involved, as in this case). 

− Assertion-based verification shows mismatches only if assertions are violated 
during execution; to a certain point, they are equivalent to testing. 

− In general (at least in widespread development tools and in most programmer’s 
habits) imperative language assertions are not statically analysed. They must be 
run; the system must be really built and tested, instead of verifying the design in 
advance. 

4 Applying the Itacio prototype to WaveX 

Provided that WaveX is a very versatile sound processor, and its user is going to 
combine multiple off-the-shelf components in many different ways, we can expect 
that construction to be a quite error-prone task; in addition, the final version of 
WaveX will have many more components, and maybe some of them will work only 



with certain kinds of signals, so the user will need also to include adaptors in his 
design, raising complexity. It is desirable to help the designer detect potential 
problems as soon as possible (at design time); moreover, a system that can directly 
point out the inconsistencies and explain them would be of value. 

Thus, Itacio comes into scene. Instead of cluttering the different components with 
C++ verifications (and handling the different error conditions), Itacio can be used to 
describe the WaveX components and verify each design before really building or 
running the system. This process will be described now. It must be noticed that, 
unless explicitly stated, the Itacio  prototype used  with WaveX is exactly the original 
one, and no special abilities have been added for WaveX.  

Before any use of Itacio can be done, we must make an instantiation of the Itacio 
model (described in a previous chapter) defining the concepts of component, source, 
sink, etc. in the target domain. In this case, it seems obvious that each WaveX 
component, with its inputs and outputs, can be directly identified as an Itacio 
component with its sinks and sources, respectively. 

With this strategy in mind, the first task is to insert in Itacio the structural 
definition of all the possible components: their name, sources and sinks. Once this has 
been done, we can use logic programming statements to write down the requirements 
and guarantees of each component separately. As an example, Fig. 3 shows the 

frontier of the DV_WaveInDevice component; this definition is a general template for 
that component, and instances of it will be created in each system as needed. In this 
case, the component does not have any sink. It has only one source (called out), and it 
offers (at the moment of the screen capture) four guarantees. 

It can be seen that guarantees are in fact Prolog code under the form of Horn 
clauses; in this case, none of the rules has a body, so they are all facts. The Prolog 

 

Fig. 3. Frontier of DV_WaveInDevice (Itacio prototype screen capture) 



code adheres to a couple of conventions: the atom names enclosed by “$” must refer 
to sources or sinks of that component, and they will be automatically substituted by 
the atoms that represent the corresponding connections (as described earlier). The 
atom names enclosed by “%” represent parameters, and they will also be substituted 
by the specific values of each component instance. In this case, the 
DV_WaveInDevice component guarantees that the signal it produces will have the 
required number of channels, resolution, sampling rate and buffer size. 

Analogous information would be entered in Itacio for all the components that could 
be used to build a system (in this case, specific sound processors). A second example, 
the description of EF_SepChannels, is shown in Fig. 4 (represented in text form and 
not as a screen capture for space reasons).  It can be seen that this component requires 
its input signal to be stereo, and compromises itself to generate a mono left signal in 
which all other features remain unchanged; the same for the right one. 

Component: EF_SepChannels 
Sinks: in Sources: left, right 
Requirements: 
 channels($in$, 2). 

Guarantees: 
 channels($left$, 1). 
 bitsPerSample($left$, X) :- bitsPerSample($in$, X). 
 samplesPerSec($left$, X) :- samplesPerSec($in$, X). 
 bufferSize($left$, X) :- bufferSize($in$, X). 
 
 channels($right$, 1). 
 bitsPerSample($right$, X) :- bitsPerSample($in$, X). 
 samplesPerSec($right$, X) :- samplesPerSec($in$, X). 
 bufferSize($right$, X) :- bufferSize($in$, X). 

Fig. 5. Frontier of EF_SepChannels. 

Having the template 
components defined, the 
final steps would be the 
creation of a system. We 
only need to define ins-
tances of the existing 
components and connect 
their sources and sinks as 
needed; also, we need to 
give the desired values to 
the parameters of each 
component instance. For 
this task, the current ver-
sion of Itacio offers a 
poor, database-style inter-
face, but of course a good 
and easy to use graphical  
editor could be developed. 

Following this pro-
cedure, we can have the 

 
Fig. 4. A system with errors and their explanations. 



sample system defined. Although Itacio does not offer graphical editing facilities yet, 
it is capable of showing a graphical representation of any system, in Web format (by 
means of XML / VML [13]) and in PostScript format. Besides the usefulness of this 
depiction for a better understanding of the system, the most interesting aspect of it is 
that it also incorporates the results of the verification process. 

Itacio can generate the Knowledge Base that represents a system (as described 
earlier in this paper) and interact with the ECLiPSe inference engine to obtain infor-
mation about the correctness of each of the connections. If some connection is not 
correct, the graph will clearly show it; the user can then click on the offending 
connection and get an explanation of the failure. Fig. 5 represents the case that the 
Input component has been configured to generate a 22050 Hz mono signal whereas 
the Play component expects a 44100 Hz signal and the Separation component needs a 
stereo signal. The system pinpoints the offending connections with a big dark square; 
when the user clicks on that square, explanations about the problem are offered so that 
he can correct his design. 

As for the real-time processing problem, we can easily add the guarantees and 
restrictions for taking this issue into account. Simply, the DV_WaveOutDevice 
component will expand its requirements to add the following terms: 

buffer_milliseconds($in$, BUFFER_TIME),  
buffer_processing_time($in$, PROCESSING_TIME), 
PROCESSING_TIME < BUFFER_TIME 

As we can see, an auxiliary predicate is needed in order to calculate the time a 
buffer holds, and this is not bound to any particular component. It is general 
knowledge, so it will be included in the system library with a simple rule: 

buffer_milliseconds(SIGNAL, TIME) :- channels(SIGNAL, CHANNELS), 
 samplesPerSec(SIGNAL, SAMPLES_PER_SECOND), 
 bufferSize(SIGNAL, BUFSIZE), 
 TIME is ((1000 * BUFSIZE) / CHANNELS) / SAMPLES_PER_SECOND. 

Also, each component would incorporate its own information about performance. 
In this case, we have included only worst-case processing time in milliseconds, and 
this information can be obtained empirically or be computed from algorithm 
complexity. In this case, EF_SepChannels could have a worst-case processing time of 
about 10 milliseconds: 

buffer_processing_time($left$, X) :- buffer_processing_time($in$, 
TIME_INPUT), X is 10 + TIME_INPUT. 

buffer_processing_time($right$, X) :- buffer_processing_time($in$, 
TIME_INPUT), X is 10 + TIME_INPUT. 

In the case of EF_JoinChannels, provided that its own processing time is always 
under 10 ms, the behaviour of this component would force it to wait for its two inputs 
(left and right) so the accumulated processing time would be the worst of both adding 
its own 10 ms:  

buffer_processing_time($out$, X) :- buffer_processing_time($left$, 
LEFT), buffer_processing_time($right$, RIGHT), LEFT > RIGHT, 
X is LEFT + 10. 

buffer_processing_time($out$, X) buffer_processing_time($left$, LEFT), 
buffer_processing_time($right$, RIGHT), LEFT =< RIGHT, 
X is RIGHT + 10. 



It must be noticed that, since this example is deliberately simple, no constraints are 
involved in the declarative description; we are using only worst-case processing 
times, and a simple comparison is enough to verify that the time window is not 
surpassed. But if a deeper analysis of the system behaviour was needed, we could use 
processing time ranges, which would require a CLP system since traditional Prolog is 
not well suited to unify or compare domains. 

Introducing these requirements and guarantees in Itacio, the result is a more 
detailed description of the behaviour of the components. In this case, the system is 
still valid, because the processing time clearly fits in the time window available; a 
buffer of 8192 samples for a stereo, 44100 samples per second signal can hold 92 ms, 

whereas processing time in the worst case is about 20 ms with the performance data 
we have entered (and these data were overly pessimistic) . But if we added a more 
complex component, things could change. As an example, we have prepared a 
component for testing purposes, which simply fakes a long processing time. If we 
introduce this component as an additional “transformation” between the right output 
of EF_Separation and the left input of EF_Joining, nothing happens if we configure it 
to spend 5 ms of time; but if we configure it to spend 100 ms, the time window is 
overflowed, and the system detects this as usual (Fig. 6). 

  

Fig. 6. The sample system 
with performance constraints. 
On the left, a correct system; 
on the right, a system whose 
processing time overflows the 
recording time window. 

 



A final comment must be done about the development process for WaveX 
modules. After the suitability of Itacio for verifying WaveX designs was established, 
a specific functionality was added to Itacio: the ability to generate the WaveX 
topology description text file from the system description stored in Itacio. This is a 
very simple database query and translation process, but it allows the WaveX user to 
use Itacio as a semi-graphical design environment; once the design is correct and 
validated against all the available knowledge about the involved components, the user 
can directly see the system working. This tight integration between the verification 
tool (Itacio) and the development/assembling tool (WaveX in this case), and a good 
implementation of the verification tool (with convenient user interfaces and graphical 
editors) is probably the key to effectively incorporate Itacio into any development 
process. 

5 Conclusions and Future Work 

The signature verification mechanism that component models such as COM, 
CORBA or JavaBeans offer today seems unable to protect developers and users 
against incorrect component combinations. We believe that component behaviour 
should be described in a manner that allows all the knowledge about a component to 
be used in an automatic, static verification process. We also believe that the proposed 
method should be feasible in the sense that it can be learnt by average programmers 
and that it should not require a huge investment in tools. Among the different 
specification tools available, logic programming seems to be a very good alternative, 
because it allows the declarative knowledge to be collected and used in an automatic 
inference process, and it is flexible enough to express very different kinds of 
restrictions. 

The Itacio component model was designed with these motivations in mind. It has 
been applied at different abstraction levels with success, and the present paper 
describes its application to a component-based real-time sound processing system, 
called WaveX. Although the samples presented here are intentionally simple for space 
reasons, they show that the generality of logic programming is a great benefit for 
describing all kinds of component use restrictions that could not be checked with 
current commercial component platforms. 

It can be argued that the Itacio approach forces the developer to learn a “second 
language”. It is indeed true that collecting and using knowledge in the design / 
development process does not come for free; but we believe that the Itacio proposal is 
clearly feasible. Any other specification technique, including many formal methods, 
would also require an extra effort for it to be effectively used. Itacio is based on 
(declarative) programming and on a very well known inference process, supported by 
available -or easy to develop- tools, and these factors may be of value for its adoption 
in a development organization.  

Although the WaveX system is not the focus of this paper, we expect it to grow 
with much more components, and we expect the Itacio component model to play an 
important role to help the final user in the design of sound processors. In this case, the 
general Itacio prototype has been used, but in future versions of WaveX, the 



verification system could be embedded in the final product, greatly improving user 
experience. 

Future research efforts could approach several problems: 
− The elimination of the closed component graph requirement (what was defined in 

Itacio as topological correctness). This would allow to verify systems in which not 
all sources and sinks are connected; in other words, this would allow to verify 
unfinished systems. 

− A more intelligent diagnostic process which extracts all useful information from 
the knowledge base that describes a system, giving better information on errors or 
even suggesting useful components for finishing a system. 

− The development of a full-fledged Itacio-based verification system (only 
prototypes have been developed so far) with graphical editors, a good user 
interface and a tight integration with other development tools. 
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