
Applying the Itacio Verification Model to a
Component-Based Real-Time Sound Processing System

Agustín Cernuda del Río, Jose Emilio Labra Gayo, Juan Manuel Cueva Lovelle

Departamento de Informática
Universidad de Oviedo

C/Calvo Sotelo S/N
33007 Oviedo, Spain

+34 985 10 {50 94, 33 94, 33 96}
{guti, labra, cueva}@lsi.uniovi.es

Abstract: The goal of the Itacio component model is to statically verify
software systems made up of components. It relies on Constraint Logic
Programming for stating the requirements and guarantees of each component,
and offers a model of verifying that a system built by combining components
fulfils the requirements for their proper operation. Itacio is driven by the goals
of static, automatic verification and high feasibility, including an easy adoption
by developers and the use of well-known technologies.

The notion of component in this model is deliberately open; thus, this method
can be (and has been) applied at different abstraction levels in the development
process. Among them, one obvious use (and its original motivation) is the
description and verification of software components in the most usual sense of
the word.

As an example, in this paper we apply Itacio to WaveX, a component-based
system for real-time audio processing. WaveX processor modules can be
combined in different topologies to achieve the desired effect. Provided that
each component is described in terms of its operation restrictions and
guarantees (by means of Horn clauses), the Itacio inference system will
statically validate the chosen composition or pinpoint the offending connections
(and explain the reasons for failure).

KEYWORDS: software components, component model, verification,
constraint logic programming, software engineering.

1 Introduction

The Itacio component model [1, 2, 4, 9] is mainly a Software Engineering method for
verifying the composition of software components. Its motivation arose from
professional experiences in software development. It became clear that the most
popular component models, such as COM, CORBA or JavaBeans solved cross-
platform or low-level interoperation problems, but they did not offer the developer
much protection against the violation of functional restrictions of the involved
components. Many of the defects of the software could have been avoided, provided

that all previous knowledge about the components was taken into account. All too
frequently, the problem was not caused by a malfunction of any of the components,
but by an incorrect connection of a component with its neighbours; a sort of emergent
behaviour.

This contrasted with the protection a programmer enjoys regarding signatures. In
strongly typed languages, the compiler checks all subroutine or method calls and
points out every type violation in a static manner (at compile time), without the need
of running the program. At the component level there exists a similar protection
(describing interfaces with IDL or type libraries). But nothing protects the
programmer beyond type and signature checking; as far as other kinds of restrictions
are involved, the programmer or designer is left alone with a natural-language (and
hence ambiguous) documentation, and he must guarantee that all this information has
been correctly interpreted and taken into account. The correctness and completeness
of this documentation does not play any direct role in automatic tests.

We felt the need of a way for:

• Expressing all that a component developer knows about the component

• Using this information in a static and automatic verification process

Also, we had some constraints in mind:

• The solution should be easily adopted by an organization, without a very
specialised training

• The solution should not require a significant advance in the state of the art of any
branch of computer science

The result of our research in this area is the Itacio component model. As for the
knowledge expression problem, we found Constraint Logic Programming to be a
convenient solution: it is very flexible, and the inference (here verification) process is
clearly automatable. In addition, it can be handled by a typical developer with an
affordable training (both in terms of time and cost), since it usually does not imply a
mentality shock. We found that other approaches that could be of interest for
verifying components did not fit well the above requirements. For instance, formal
methods seem difficult to use by the average developer; even if it were false, this is
the way they are perceived by the industry [14]. Other initiatives, such as OCL [8],
are oriented to modelling only; OCL explicitly warns about being considered as
“executable” [8, p.1]. Logic programming addresses both (and other) limitations.

Logic programming (and its advanced versions) is not a widespread practice in the
development industry; our advocacy of this long-tradition technology as a companion
for software components is initially surprising in peer-to-peer presentations, but after
the necessary explanations we usually get positive feedback. Other authors agree that
logic programming can fill significant gaps in current software component
technologies [11]. Ongoing projects try to give logic programming languages the
necessary features to allow them to be used as the basis of big projects, efficiency
among others [17]; but we think that even using them only as an additional tool in
combination with fully imperative implementations can bring significant benefits.

In this paper, the Itacio component model is briefly introduced. Then (and in a
totally independent manner) the WaveX real-time sound processing system is
described. Afterwards, the application of Itacio to the verification of WaveX
processor designs is presented. Finally, conclusions are obtained from these
experiences and future research and development lines are presented.

2 The Itacio Component Model

The Itacio component model offers a way of verifying software systems built by
joining components. The main advantages of this model are that no execution of the
program is needed, the specification system is fully modular and, in addition, it can be
easily supported by a Constraint Logic Programming system. Finally, this model can
be applied at different levels of abstraction. The notion of component in this model is
deliberately open, so the user can apply a general verification framework to a very
wide spectrum of problems beyond typical binary components [3].

A precise description of this model can be found in [2]. The central idea of the
Itacio model is a flexible definition of a component. A component C is an entity
which has a frontier F(C) and a set of restrictive expressions E(C).

F(C) is a finite set whose elements are called connection points; these connection
points can be sources (whose set is denoted by S(C)) or sinks (whose set is denoted by
K(C)). Informally stated, sources carry information outside of a component (e.g., a
function call) and sinks introduce information into a component (e.g., a function’s
entry point). Components are considered to be black boxes; their only observable
behaviour is described in terms of F(C) and E(C). A consequence of this is that the
only possible source of errors is a bad connection between components. That is not
necessarily true in the real world, but this axiom allows Itacio to become functional. If
the internal behaviour of a component must be verified, the model can be applied
again at a lower level of abstraction.

Restrictive expressions are also divided into two disjoint subsets. The set of
requirements R(C) contains restrictive expressions that are Horn clauses over the
sinks. The set of guarantees G(C) contains Horn clauses over both sinks and sources.
In addition, there is a one-to-one correspondence between the sinks and the
requirements (there is one requirement predicate associated to each sink, although this
predicate can refer to more than one sink). Requirements do not refer to sources
because, as said above, this system intends to verify the composition of components,
not the internal behaviour of a component; so it is assumed that the component
manufacturer has control over the behaviour of the component itself and he does not
need to restrict its own outputs. Maybe another component will (in its restrictions
over its own inputs or sinks).

A system Ω = {ν, ε, L} is a finite graph whose nodes ν are components and whose
edges ε are source/sink pairs, together with a set L of auxiliary predicates called the
library. Thus, a system is built by taking components and connecting each and every
source with some sink, and adding some auxiliary predicates. The first requirement
for a system (the so-called topological correctness) establishes that there will be no

isolated connection points (although this is a possible extension for the system; see
future work at the end of this article).

The knowledge base for the system, K(Ω), is built by following an iterative
substitution process over all the source and sink names so that, if some si ∈ S(Cm)
and kj ∈ K(Cn) are connected, a new, unique atom name a is generated and a new
version of the involved rules (be it requirements or guarantees) is generated as
needed, substituting all the occurrences of si and kj by a in these generated rules. The
K(Ω) resulting from this process implicitly contains the information about the
topology of the system and all the deducible rules that relate inputs and outputs of the
components. The building process also ensures that the relationship between each
resulting requirement and its associated sink is not lost.

Finally, the verification model relies on an inference process over K(Ω). The
system is considered to be correct if each and every requirement of K(Ω) is proven to
be true. Also, since each requirement in K(Ω) is related to one sink, if some
requirement is not fulfilled it is possible to know exactly which connection point is
failing and why.

A first prototype for this model was implemented with a diagramming tool [1],
which allowed to make an initial test for the basic ideas; after that, a Java/XML/VML
prototype (with a web-based user interface) was built [2, 3]. Experiments with this
second prototype allowed to refine the structure of the model and to test its
application to new abstraction layers of the development process to verify that this
simple schema is useful and will behave as expected in different situations. It was
applied to time evolution of reuse contracts [3], to remote personal computer
diagnostics [5] and others. Although none of this use cases had been planned when
the model was described, it was successfully applied with no modifications. This gave
confidence on its generality.

Currently, a third prototype is in its final development stages. The user interface is
web-based (making use of ASP, XML and VML), the information about components
and systems is stored in a database (previous versions used text files), and the
inference engine is the ECLiPSe CLP System [6], as it had been also in previous
versions. This third version of Itacio has been used for the experiments that led to this
paper. Although this is a prototype and its usability could be clearly improved, it must
be noticed that the technologies that would be involved in that improvement are
widely available and well-known.

3 The WaveX Sound Processing System

WaveX is a real-time sound processing system developed in C++, making use of
the Microsoft Visual C++ 6.0 compiler. The Microsoft Foundation Classes, or MFC
[15], an object-oriented framework included with the compiler, are also used,
specially for the GUI.

The goal of WaveX is to bring an audio processing system that leverages the
processing power of modern personal computers. Professional, specific sound
processing devices are costly, whereas current personal computers have reached a
computing capacity that enables software to be used as a real-time digital sound

processor. In addition, sound capture and play devices (i.e., sound cards) are
widespread and affordable; in fact, it is not unusual that modern motherboards include
them onboard. There are already sound processing systems which take advantage of
personal computers, although they frequently advocate the use of additional hardware
[10, 18]. Many other products are available for audio editing, but they are not usually
oriented to real-time processing [7].

Hence, the use of domestic, general-purpose computing equipment in place of
specific sound processing devices becomes a cheap and convenient alternative for
many users. Some milliseconds of sound are digitised (by means of an Analog-to-
Digital Converter) and stored in a buffer of discrete values that represent the
amplitude of the signal at regular time lapses; the processing can be done numerically
over these values, and the Digital-to-Analog hardware converter generates the
resulting analog wave that we can hear [16]. Modern personal computers offer high
processing capabilities which allow these computations to be fast enough to provide a
real-time source of sound; all that is needed is to repeat the same operations on the
next buffer while the previous one is being played by the sound hardware, without
any interruption.

In general, sound processing is done by combining different stages, i.e., devices
whose inputs and outputs are connected by wires (like distortion pedals, mixers, and
the like). Since WaveX intends to substitute this structure by software, it seemed a
good candidate for component-based development. A general framework was
defined, and then a module was implemented for each desired effect (this process
continues nowadays). The user of WaveX can describe the so-called topology of the
sound processor in a description text file (more details on this later), and when this
file is loaded by WaveX it sets up all the necessary components and their connections.
Of course, the huge flexibility of software is a great advantage, since new modules for
specific effects can be developed and used in the system at very low cost.

We decided to build WaveX as a Microsoft Windows application, where the
modules would be Dynamic Link Libraries (DLLs) with a defined interface. A
proprietary interface schema was defined for these DLLs. No middleware (such as
COM or CORBA) was used for several reasons. First, efficiency and development
simplicity were important factors. Thus, the time overhead of middleware calls was
undesirable; so was the development complexity overhead involved. Also,
middleware would not have brought any remarkable benefit in this case. No inter-
process or inter-machine communication / deployment was planned, no inter-
application communication seemed necessary, no multiple language support was
desired.

The initial version of WaveX includes several components. The example presented
here is deliberately simple, since the focus of this paper is not the sound processing
system itself; thus, only some of the possible components will be described here for
simplicity and space reasons –enough to get a basic understanding of what the system
is and does.

DV_WaveInDevice captures the sound being digitised by the sound card and
supplies it on its only output.

DV_WaveOutDevice receives a sound stream on its only input and plays it on the
PC hardware.

DV_WaveGeneratorDevice generates a sound with certain features and supplies
it in its only output (it is used mainly for testing purposes).

EF_Compression: Compression effect. It receives a sound stream on its input, and
raises the amplitude of the weaker signals whereas the stronger signals are less
affected. The dynamic range of a signal describes the range of loudness from the
quietest signal in a recording to the loudest one; the result of compression, thus, is a
smaller dynamic range, something that can be needed because the recording device
can register a limited dynamic range (so without compression some sounds would be
lost) or because of personal preferences.

EF_Distortion: The amplitude of a signal can be limited to certain maximum
levels; if the original wave goes below or over the limits (saturation), it is cut off. In
the real world it can happen because of circuitry or device recording practical
limitations (and it is usually an undesired effect), but it is also deliberately used in
certain cases (electric guitars are often distorted with specific devices).

EF_Echo: Echo results from taking a signal and adding the same signal with
certain time delay and possibly with a lower amplitude. This component implements
several kinds of echo effects: conventional echo adds the displaced signal indefinitely
but with a progressive decay, with the effect of an ever quieter repetition (just as
natural echo). Delay adds the signal only once; the effect is the same sound played
twice but not simultaneously (the delay is usually very short). Reverberation tries to
emulate the effect of the sound echoing from different walls (at different distances
and angles) in a room, and this effect is achieved by adding the signal with different
delays and decays. EF_Echo is a sample of a component whose behaviour can be
highly parameterised.

EF_Gain: This component simply multiplies the amplitude of the signal by a
factor. A factor of 2 produces a signal which is “twice as louder” as the original one; a
factor of 0 produces silence.

EF_SepChannels: This component has one input and two outputs. The input
signal is supposed to be stereo, and the left and right components (channels) are
separated into two mono signals.

EF_JoinChannels: This component has two inputs and one output. It receives two
mono sound streams, and combines them into an stereo output signal.

MODULE Input DV_WaveInDevice.DLL
 PARAM DesiredChannels 2
 PARAM DesiredBitsPerSample 16
 PARAM DesiredBufferSize 4096
 PARAM DesiredSamplesPerSecond 44100

MODULE Separation EF_SepChannels.DLL

MODULE Joining EF_JoinChannels.DLL

MODULE Play DV_WaveOutDevice.DLL
 PARAM DesiredChannels 2
 PARAM DesiredBitsPerSample 16
 PARAM DesiredSamplesPerSecond 44100

LINK Input out Separation in
LINK Separation left Joining right
LINK Separation right Joining left
LINK Joining out Play in

Fig. 1. A WaveX script which describes a system for
inverting stereo channels; on the right, graphical
representation of this system.

Many other components can be (and are being) implemented: noise gates,
frequency filters, mixers, etc. Also, WaveX will be extended to process signals from
disk and to record them to disk. All that is needed is to create new components. The
core of the system will also be extended to synchronize different signals, so that it can
be used as a small, cheap recording and mixing studio. For more information on the
WaveX project, see [19].

As said above, these WaveX components have well-defined inputs and outputs.
Their operation can also be modified by means of different parameters. For instance,
DV_WaveInDevice can be set up to record signals at different sampling rates (8000,
11025, 22050 and 44100 samples per second), different resolutions (8 or 16 bits per
sample), different number of channels (1 for mono signals and 2 for stereo signals),
and different buffer lengths. DV_Gain can raise or reduce the amplitude of a signal
depending on the gain factor.

There is a tension between parameters and sinks; the role of parameters is to allow
the creation of component instances with some degree of freedom over its behaviour,
without the need of creating additional sinks and “constant” components just to
represent the parameter values. This would add unneeded complexity to the design.

As said above, the user can write a “topology” file that describes certain
configuration of components. For instance, the script in Fig. 1 inverts left and right
channels of a stereo signal. The involved keywords are very simple: the MODULE
statement declares a module instance, indicating which component (DLL) implements
it. The PARAM statements follow the component they affect. The LINK statements
refer to the declared component instances, giving information on how they must be
connected. The syntax can be easily deduced from this sample:

MODULE <Name> <ComponentDLL>
PARAM <ParamName> <Value>
LINK <OriginModule> <Source> <EndModule> <Sink>

The WaveX core loads and interprets this script, creating the working system by
combining the necessary components (see Fig. 2).

Fig. 2. The sample WaveX system in action: the core (WavexGUI), the Input component and
the Play component. The Separation and Joining components have no visual representation.

With this simple example, it seems that no verification is needed. But even in this
case, errors can be made. For instance, if the Input device is configured to record a
mono signal (PARAM DesiredChannels 1) the system will not work. The
Separation component needs a stereo signal, whereas Input would be configured to
produce a mono signal. A special difficulty is that problems could arise at distant
components; for instance, if Input was configured to record at 44100 samples per
second but Play was configured to play at 22050 samples per second, the problem
would manifest at the connection between Play and Joining (there is really no
problem until that point, since the intermediate components can handle any sampling
rate). Some devices may require a limited amplitude margin (for instance, certain
playing hardware may even be damaged by a too loud signal, so it could be
interesting to require limits somewhere). Of course, WaveX is designed to support
much more complicated systems (involving more components and more interrelated
parameters) than the small example of Fig. 1, and there are lots of potential
malformations.

There is still an important problem when WaveX is used in real time. As said
above, each buffer holds a certain lapse of the sound; its duration depends on buffer
size, sampling rate and the quality (resolution and number of channels) of the signal.
The buffer generated by a recording component is passed from one component to
another, being processed in different ways, and usually ends in a playing component.
The time window available for doing this is the duration of a buffer; if the time
needed for fully processing a buffer is longer than the lapse of sound a buffer holds,
the system will not be prepared for immediately processing the next recorded buffer,
since the recorder produces buffers at a constant and uninterrupted pace.

Of course, it is possible to try to tackle these connection problems with
“traditional” pre/postconditions or assertions [12]. But this has some disadvantages:
− The interface description (and the knowledge about the intended use) of a

component will be buried in the processing source code, mixed with it.
− The process of handling a mismatch does not end simply detecting it; the error

condition must be reported, described and properly handled, and coherent
exception handling may not be an easy task (especially when separate components
are involved, as in this case).

− Assertion-based verification shows mismatches only if assertions are violated
during execution; to a certain point, they are equivalent to testing.

− In general (at least in widespread development tools and in most programmer’s
habits) imperative language assertions are not statically analysed. They must be
run; the system must be really built and tested, instead of verifying the design in
advance.

4 Applying the Itacio prototype to WaveX

Provided that WaveX is a very versatile sound processor, and its user is going to
combine multiple off-the-shelf components in many different ways, we can expect
that construction to be a quite error-prone task; in addition, the final version of
WaveX will have many more components, and maybe some of them will work only

with certain kinds of signals, so the user will need also to include adaptors in his
design, raising complexity. It is desirable to help the designer detect potential
problems as soon as possible (at design time); moreover, a system that can directly
point out the inconsistencies and explain them would be of value.

Thus, Itacio comes into scene. Instead of cluttering the different components with
C++ verifications (and handling the different error conditions), Itacio can be used to
describe the WaveX components and verify each design before really building or
running the system. This process will be described now. It must be noticed that,
unless explicitly stated, the Itacio prototype used with WaveX is exactly the original
one, and no special abilities have been added for WaveX.

Before any use of Itacio can be done, we must make an instantiation of the Itacio
model (described in a previous chapter) defining the concepts of component, source,
sink, etc. in the target domain. In this case, it seems obvious that each WaveX
component, with its inputs and outputs, can be directly identified as an Itacio
component with its sinks and sources, respectively.

With this strategy in mind, the first task is to insert in Itacio the structural
definition of all the possible components: their name, sources and sinks. Once this has
been done, we can use logic programming statements to write down the requirements
and guarantees of each component separately. As an example, Fig. 3 shows the

frontier of the DV_WaveInDevice component; this definition is a general template for
that component, and instances of it will be created in each system as needed. In this
case, the component does not have any sink. It has only one source (called out), and it
offers (at the moment of the screen capture) four guarantees.

It can be seen that guarantees are in fact Prolog code under the form of Horn
clauses; in this case, none of the rules has a body, so they are all facts. The Prolog

Fig. 3. Frontier of DV_WaveInDevice (Itacio prototype screen capture)

code adheres to a couple of conventions: the atom names enclosed by “$” must refer
to sources or sinks of that component, and they will be automatically substituted by
the atoms that represent the corresponding connections (as described earlier). The
atom names enclosed by “%” represent parameters, and they will also be substituted
by the specific values of each component instance. In this case, the
DV_WaveInDevice component guarantees that the signal it produces will have the
required number of channels, resolution, sampling rate and buffer size.

Analogous information would be entered in Itacio for all the components that could
be used to build a system (in this case, specific sound processors). A second example,
the description of EF_SepChannels, is shown in Fig. 4 (represented in text form and
not as a screen capture for space reasons). It can be seen that this component requires
its input signal to be stereo, and compromises itself to generate a mono left signal in
which all other features remain unchanged; the same for the right one.

Component: EF_SepChannels
Sinks: in Sources: left, right
Requirements:
 channels(in, 2).

Guarantees:
 channels($left$, 1).
 bitsPerSample($left$, X) :- bitsPerSample(in, X).
 samplesPerSec($left$, X) :- samplesPerSec(in, X).
 bufferSize($left$, X) :- bufferSize(in, X).

 channels($right$, 1).
 bitsPerSample($right$, X) :- bitsPerSample(in, X).
 samplesPerSec($right$, X) :- samplesPerSec(in, X).
 bufferSize($right$, X) :- bufferSize(in, X).

Fig. 5. Frontier of EF_SepChannels.

Having the template
components defined, the
final steps would be the
creation of a system. We
only need to define ins-
tances of the existing
components and connect
their sources and sinks as
needed; also, we need to
give the desired values to
the parameters of each
component instance. For
this task, the current ver-
sion of Itacio offers a
poor, database-style inter-
face, but of course a good
and easy to use graphical
editor could be developed.

Following this pro-
cedure, we can have the

Fig. 4. A system with errors and their explanations.

sample system defined. Although Itacio does not offer graphical editing facilities yet,
it is capable of showing a graphical representation of any system, in Web format (by
means of XML / VML [13]) and in PostScript format. Besides the usefulness of this
depiction for a better understanding of the system, the most interesting aspect of it is
that it also incorporates the results of the verification process.

Itacio can generate the Knowledge Base that represents a system (as described
earlier in this paper) and interact with the ECLiPSe inference engine to obtain infor-
mation about the correctness of each of the connections. If some connection is not
correct, the graph will clearly show it; the user can then click on the offending
connection and get an explanation of the failure. Fig. 5 represents the case that the
Input component has been configured to generate a 22050 Hz mono signal whereas
the Play component expects a 44100 Hz signal and the Separation component needs a
stereo signal. The system pinpoints the offending connections with a big dark square;
when the user clicks on that square, explanations about the problem are offered so that
he can correct his design.

As for the real-time processing problem, we can easily add the guarantees and
restrictions for taking this issue into account. Simply, the DV_WaveOutDevice
component will expand its requirements to add the following terms:

buffer_milliseconds(in, BUFFER_TIME),
buffer_processing_time(in, PROCESSING_TIME),
PROCESSING_TIME < BUFFER_TIME

As we can see, an auxiliary predicate is needed in order to calculate the time a
buffer holds, and this is not bound to any particular component. It is general
knowledge, so it will be included in the system library with a simple rule:

buffer_milliseconds(SIGNAL, TIME) :- channels(SIGNAL, CHANNELS),
 samplesPerSec(SIGNAL, SAMPLES_PER_SECOND),
 bufferSize(SIGNAL, BUFSIZE),
 TIME is ((1000 * BUFSIZE) / CHANNELS) / SAMPLES_PER_SECOND.

Also, each component would incorporate its own information about performance.
In this case, we have included only worst-case processing time in milliseconds, and
this information can be obtained empirically or be computed from algorithm
complexity. In this case, EF_SepChannels could have a worst-case processing time of
about 10 milliseconds:

buffer_processing_time($left$, X) :- buffer_processing_time(in,
TIME_INPUT), X is 10 + TIME_INPUT.

buffer_processing_time($right$, X) :- buffer_processing_time(in,
TIME_INPUT), X is 10 + TIME_INPUT.

In the case of EF_JoinChannels, provided that its own processing time is always
under 10 ms, the behaviour of this component would force it to wait for its two inputs
(left and right) so the accumulated processing time would be the worst of both adding
its own 10 ms:

buffer_processing_time(out, X) :- buffer_processing_time($left$,
LEFT), buffer_processing_time($right$, RIGHT), LEFT > RIGHT,
X is LEFT + 10.

buffer_processing_time(out, X) buffer_processing_time($left$, LEFT),
buffer_processing_time($right$, RIGHT), LEFT =< RIGHT,
X is RIGHT + 10.

It must be noticed that, since this example is deliberately simple, no constraints are
involved in the declarative description; we are using only worst-case processing
times, and a simple comparison is enough to verify that the time window is not
surpassed. But if a deeper analysis of the system behaviour was needed, we could use
processing time ranges, which would require a CLP system since traditional Prolog is
not well suited to unify or compare domains.

Introducing these requirements and guarantees in Itacio, the result is a more
detailed description of the behaviour of the components. In this case, the system is
still valid, because the processing time clearly fits in the time window available; a
buffer of 8192 samples for a stereo, 44100 samples per second signal can hold 92 ms,

whereas processing time in the worst case is about 20 ms with the performance data
we have entered (and these data were overly pessimistic) . But if we added a more
complex component, things could change. As an example, we have prepared a
component for testing purposes, which simply fakes a long processing time. If we
introduce this component as an additional “transformation” between the right output
of EF_Separation and the left input of EF_Joining, nothing happens if we configure it
to spend 5 ms of time; but if we configure it to spend 100 ms, the time window is
overflowed, and the system detects this as usual (Fig. 6).

Fig. 6. The sample system
with performance constraints.
On the left, a correct system;
on the right, a system whose
processing time overflows the
recording time window.

A final comment must be done about the development process for WaveX
modules. After the suitability of Itacio for verifying WaveX designs was established,
a specific functionality was added to Itacio: the ability to generate the WaveX
topology description text file from the system description stored in Itacio. This is a
very simple database query and translation process, but it allows the WaveX user to
use Itacio as a semi-graphical design environment; once the design is correct and
validated against all the available knowledge about the involved components, the user
can directly see the system working. This tight integration between the verification
tool (Itacio) and the development/assembling tool (WaveX in this case), and a good
implementation of the verification tool (with convenient user interfaces and graphical
editors) is probably the key to effectively incorporate Itacio into any development
process.

5 Conclusions and Future Work

The signature verification mechanism that component models such as COM,
CORBA or JavaBeans offer today seems unable to protect developers and users
against incorrect component combinations. We believe that component behaviour
should be described in a manner that allows all the knowledge about a component to
be used in an automatic, static verification process. We also believe that the proposed
method should be feasible in the sense that it can be learnt by average programmers
and that it should not require a huge investment in tools. Among the different
specification tools available, logic programming seems to be a very good alternative,
because it allows the declarative knowledge to be collected and used in an automatic
inference process, and it is flexible enough to express very different kinds of
restrictions.

The Itacio component model was designed with these motivations in mind. It has
been applied at different abstraction levels with success, and the present paper
describes its application to a component-based real-time sound processing system,
called WaveX. Although the samples presented here are intentionally simple for space
reasons, they show that the generality of logic programming is a great benefit for
describing all kinds of component use restrictions that could not be checked with
current commercial component platforms.

It can be argued that the Itacio approach forces the developer to learn a “second
language”. It is indeed true that collecting and using knowledge in the design /
development process does not come for free; but we believe that the Itacio proposal is
clearly feasible. Any other specification technique, including many formal methods,
would also require an extra effort for it to be effectively used. Itacio is based on
(declarative) programming and on a very well known inference process, supported by
available -or easy to develop- tools, and these factors may be of value for its adoption
in a development organization.

Although the WaveX system is not the focus of this paper, we expect it to grow
with much more components, and we expect the Itacio component model to play an
important role to help the final user in the design of sound processors. In this case, the
general Itacio prototype has been used, but in future versions of WaveX, the

verification system could be embedded in the final product, greatly improving user
experience.

Future research efforts could approach several problems:
− The elimination of the closed component graph requirement (what was defined in

Itacio as topological correctness). This would allow to verify systems in which not
all sources and sinks are connected; in other words, this would allow to verify
unfinished systems.

− A more intelligent diagnostic process which extracts all useful information from
the knowledge base that describes a system, giving better information on errors or
even suggesting useful components for finishing a system.

− The development of a full-fledged Itacio-based verification system (only
prototypes have been developed so far) with graphical editors, a good user
interface and a tight integration with other development tools.

References

1. Cernuda, A., Labra, J. E., Cueva, J. M. Itacio: A Component Model for Verifying Software
at Construction Time. III ICSE Workshop on CBSE. 5-6 June 2000, Limerick, Ireland.
http://www.sei.cmu.edu/cbs/cbse2000/papers/index.html

2. Cernuda, A., Labra, J. E., Cueva, J. M. A Model for Integrating Knowledge into
Component-Based Software Development. KM - SOCO 2001, 26-29 June 2001, Paisley
(Glasgow, Scotland). ICSC Academic Press, ISBN: 3-906454-27-4.

3. Cernuda, A., Labra, J. E., Cueva, J. M. Verifying Reuse Contracts with a Component
Model. 6th JISBD, 21-23 November 2001, Almagro (Spain).

4. Cernuda, A., Labra, J. E., Cueva, J. M. Verificación y validación mediante un modelo de
componentes. SISOFT-2001 - Bogotá (Colombia), 29-31 August 2001 (Spanish only).
 http://atenea.udistrital.edu.co/eventos/simposio/

5. Cernuda, A. Diagnóstico remoto de configuración de componentes software en Windows
(Remote Diagnostics of Software Components Configuration under Windows). Poster at the
University of Oviedo Technology Transfer Conference, 13-14 September 2001 (Spanish
only). http://www.uniovi.es/Vicerrectorados/Investigacion/
portal/ot/activos/Diagnóstico%20remoto.PDF

6. ECLiPSe web site. http://www.icparc.ic.ac.uk/eclipse
7. GoldWave audio editor, http://www.goldwave.com
8. IBM and others. Object Constraint Language Specification, version 1.1. September, 1997.
9. Itacio project web page.

http://www.agustincernuda.com/itacio_eng.html
10. Kyma (a product by Symbolic Sound Corporation),

http://www.symbolicsound.com
11. Lau, K. K. The Role of Logic Programming in Next-generation Component-based Software

Development. Proceedings of Workshop on Logic Programming and Software Enginering,
London, July 2000 (edited by Gupta, G. and Ramakrishnan, I. V.)

12. Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1988. Second edition:
ISBN 0136291554, April 1997.

13. Microsoft VML Overview.
http://msdn.microsoft.com/workshop/author/vml

14. Pressman, Roger S. Software Engineering. McGraw-Hill, 1992.
15. Prosise, Jeff. Programming Windows 95 with MFC. Microsoft Press.

16. Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing. California
Technical Publishing, 1997. ISBN 0-9660176-3-3. Available online at
http://www.dspguide.com/pdfbook.htm

17. Somogyi, Z., Hendersgon, F. J. and Conway, T. C. The implementation of Mercury, an
efficient purely declarative logic programming language. Proceedings of the ILPS '94
Postconference Workshop on Implementation Techniques for Logic Programming
Languages. Syracuse (New York), November 1994.

18. Waves (KS Waves, Ltd.) http://www.waves.com
19. WaveX project web page. http://www.agustincernuda.com/wavex_eng.html

